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We attempt the description of the motion of a system of bubbles in a 
low viscosity liquid by means of Lagrange equations with the kinetic 
energy of an ideal liquid as the Lagrangian function. The acceleration 
of each bubble is assumed to be small such that the change in velocity) 
can be neglected. A consideration of the virtual power of the general-  
ized external forces leads to an expression, differing from that in [1], 
for the viscous friction force acting on a bubble in the system. The 
effect of the concentration and form of the system on the velocity of 
ascent of the bubbles for tow bubble concentration is investigated. The 
maximum size of the region occupied by the bubbles when the effect 
of wakes on the motion of the system can be neglected is estimated. 

1. L a g r a n g e  E q u a t i o n s .  T h e  m o t i o n  o f  a s y s t e m  of  

g a s  b u b b l e s  in a n  i d e a l  i n c o m p r e s s i b l e  f l u i d  c a n  b e  

d e s c r i b e d  [2] b y  L a g r a n g e  e q u a t i o n s  

d OT OT 
- Qi (1. i ) dt Ou~ Oq 

with a Lagrangian function equal to T, the kinetic 

energy of an ideal liquid. Here T is determined by the 

radius-vectors r i of the centers of the bubbles and 

their velocities ui at the same instant (i = 1 .... , N), 
and Qi is the generalized external force acting on the 
i-th bubble of the system. Such a description is pos- 

sible since the interaction propagates with the speed 
of sound, which can be regarded as infinite for an in- 

compressible medium. In fact, in the case of the po- 

tential flow of an ideal liquid the velocity of the liquid 

at any point at a given instant is determined by the 

velocities of the moving bubbles at the same instant. 

In the case of a system of bubbles of moderate size 

in  a l i q u i d  of  l ow  v i s c o s i t y  (1 < < R  < 300 ,  R = u a / v  i s  

t h e  R e y n o l d s  n u m b e r ,  a n d  u i s  t h e  v e l o c i t y  of  a b u b b l e  

of  r a d i u s  a in  a l i q u i d  w i t h  k i n e m a t i c  v i s c o s i t y )  t h e  

s u m  of  a l l  t h e  f o r c e s  a c t i n g  on  t h e  i - t h  b u b b l e  (i  = 1, 

. . . .  N) o f  n e g l i g i b l y  s m a l l  m a s s  w i l l  b e  z e r o  a n d  t h e  

o n l y  f o r c e  a c t i n g  on  s u c h  a b u b b l e  in  t h e  l i q u i d  w i l l  b e  

t h e  h y d r o d y n a m i c  p r e s s u r e  

i ( - -  pnt ~' + ~" ~.~n~) dS = f ( -  p + ~ )  ni~ dS = 0 

z '~=l~(Ov~/Or3+Ovq/Or~) ,  z > r = 2 p O v ~ / O r  ( 1 . 2 )  

w h e r e  p i s  t h e  p r e s s u r e  in  t h e  l i q u i d ,  n ~  a r e  t h e  c o m -  

p o n e n t s  of  t h e  u n i t  v e e t o r  o f  t h e  e x t e r n a l  n o r m a l  to  d S - -  

a n  e l e m e n t  o f  s u r f a c e  of  t h e  i - t h  b u b b l e ,  ~,c~fl a r e  t h e  

c o m p o n e n t s  o f  t h e  v i s e o u s  s t r e s s - t e n s o r  w i t h  a s i n g l e  

n o n z e r o  c o m p o n e n t  (~,T'Y in  a s p h e r i c a l  e o o r d i n a t e  s y s -  

t e r n  w i t h  i t s  c e n t e r  a t  t h e  c e n t e r  o f  t h e  i - t h  b u b b l e ,  

i s  t h e  d y n a m i c  v i s c o s i t y ,  ~,c~ a r e  t h e  c o m p o n e n t s  of  

t h e  l i q u i d  v e l o c i t y ,  a n d  r ~ a r e  t h e  c o o r d i n a t e s  o f  t h e  

o b s e r v a t i o n  p o i n t  (c~ = 1, 2 ,  3). I n  ( 1 . 2 )  a n d  h e n c e f o r t h  

w e  a s s u m e  s u m m a t i o n  o v e r  t h e  r e p e a t e d  G r e e k  i n d i c e s .  

T h e  p r e s s u r e  p c a n  b e  r e p r e s e n t e d  a s  t h e  s u m  of  

p0--the pressure in an ideal liquid--and p '--an addi- 

tional viscosity-dependent term, which in conjunction 

with ff~rr leads to the appearance of a viscous friction 

force. For an ideal liquid [3] 

i d OT OT 
- -  p o n ~ d $  at Ou~ c3r~ (1 .3 )  

a n d  h e n c e ,  by  i n c l u d i n g  t h e  v i s c o u s  f r i c t i o n  f o r c e  i n  

t h e  e x t e r n a l  f o r c e s  a c t i n g  on  t h e  i - t h  b u b b l e  w e  c a n  

r e g a r d  t h e  L a g r a n g e  e q u a t i o n s  a s  a c o r o l l a r y  of ( 1 . 2 )  

and (1.3). 
However, a consideration of the viscosity-dependent forces means 

that if in the description of the motion of a system of bubbles in a 
viscous liquid we describe the system not by considering the interaction 
of each bubble with the surrounding liquid, but as an assembly of 
material points interacting in accordance with a definite law and 
situated in an external field, then we cannot consider such action as 
instantaneous. In fact, the viscous friction-force depends on the flow 
velocity relative to the bubble at the considered instant and on the 
acceleration of the relative motion at earlier times. A boundary layer 
with transverse dimensions of the order of a R -l/z is formed around 
each bubbIe. The propagation t ime of the perturbation through the 
region occupied by the boundary layer is on the order of a2/vR ~ a/u. 
Hence, the change in the velocity of the flow impinging on the bubble 
leads to a change in the viscous friction-force with a delay on the order 
of a /u .  The veioeity of the impinging flow on the considered bubble 
depends on the velocities of the other bubbles in the system. It follows 
tbat the viscous friction force includes the particle interaction force 
propagated with finite velocity. 

Such interaction cannot be included in the Lagrangian function, 
which depends only on the coordinates and velocities at the con- 
sidered instant nor in the generaIized external forces Qi, since by 
definition the Qi entail the assumption that the liquid velocity at any 
point is determined by the instantaneous positions and velocities of the 
bubbles. 

The finiteness of the propagation velocity of the interaction 
makes it impossible to give a rigorous description of the motion of a 
system of bubbles in a viscous liquid by means of Lagrange equations 
with a Lagrangian function equal to the kinetic energy of an ideal 
liquid. To determine the generalized external forces Qi for bubbles 
in a low viscosity liquid we follow Levich [4] and assume that the 
velocity field around the bubbles does not differ greatly from the 
velocity field of an ideal liquid. The corrections to the kinetic energy 
of the liquid flowing around a single bubble will be of the order of I/R. 

By repeating the arguments of [2] we show that for 

a low viscosity liquid the generalized forces will be 
the coefficients in front of the virtual bubble velocities 
Dr~/Dt in the expression for the virtual power of the 

forces acting on the system, which, in view of (1.2), 

is equal to the virtual power of the forces acting on the 
liquid 

l dv ~ N Dr~ 
P q-f V~ d3r = ~' Q~' D--T- (1 .4 )  

where p is the density of the liquid, V ~ is the compo- 
nent of the virtual liquid velocity due to the virtual 
motion of the bubbles with velocities Dr~/Dt. 
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We c o n s i d e r  the  m o t i o n  of a s y s t e m  of bubbles  of 
r a d i u s  a. The  bubble  v e l o c i t i e s  r e l a t i v e  to the  l iqu id  
at r e s t  at  inf in i ty  a r e  ui .  The v e l o c i t y  f i e ld  po t en t i a l  
of th is  l i qu id  s a t i s f i e s  the  L a p l a c e  equa t ion  

A@ = 0 (1.5) 

w i th  boundary  cond i t ions  

n d  aiD/Or �9 = n d u i  �9 at r (  = a, and 

q-)--~ 0 at  r (  --+ oe 

( r ( = l r ( [ ,  r (  ---- r - - r i ,  l = t  . . . . .  N). (1.6) 

The  so lu t ion  of t h i s  p r o b l e m ,  a c c u r a t e  to t e r m s  of 
o r d e r  ( a / l )  3, w h e r e  l is the  m e a n  d i s t a n c e  be tween  the  
bubble  c e n t e r s  is 

(I)-- 
a~ N 
2 E vt~ri ~r 

r;.'3 
i = l  

N a~ 
vd = u~ ~ -  T ~, u i S A i ~ '  A ~  --0,  

j = l  

AU ~ = rii~ r i~  = a 5t= ~)' 

r , ~ = r  t - r ~ ,  rl i = [ r t i ]  (1.7) 

The  v i r t u a l  d i s p l a c e m e n t s  of the  bubbles  g ive  r i s e  
to a v i r t u a l  pote~ntial 

(I)' - -  aa N Dr t~ 
2 ~ ~i~ D--T- 

]=1. 

, r~ a 2 ~ ri'a ] 
j = l  

o~ ~ ~d {~o ( i= i )  n~ t~ Or ~ = - - 2 - - - ~ 6 ~ ,  6~i= (1.11) 
(i 4=/) " 

Hence ,  we can  r e w r i t e  Q~,  u s i n g  cr'Yfi = (r'rrnjTnj fl 
and (1.11), in the f o r m  

+ ~ "  ~'~ O'eh~ d 3 r - - - ~ - p c O g %  (1.12) 
Or~Or v 

The  i n t e g r a l  o v e r  the  in f in i t e ly  d i s t an t  s u r f a c e  
bounding  the  s y s t e m  d i s a p p e a r s ,  s i n c e  it  is a s s u m e d  
that  the  r e g i o n  occup ied  by the bubbles  has  a f in i t e  
s i z e  and, hence ,  when  r - -  ~o we obta in  p ~ cons t ,  
~ f f / O r f l  ~ r -a, and ~'crfl ~ r - 4 .  

The f i r s t  i n t e g r a l  in (1.12), in a c c o r d a n c e  wi th  (1.2) 
is z e r o ,  the  s econd  t e r m  is the  A r c h i m e d e s  f o r c e ,  and 
the  t h i r d  t e r m  is the  v i s c o u s  f r i c t i o n  f o r c e ,  which  can  
be  c a l c u l a t e d  with  an e r r o r  of the  o r d e r  of R -1/2 by 

r e p l a c i n g  the  v e l o c i t y  f i e ld  in the  whole  s p a c e  by the 
v e l o c i t y  f i e ld  of an idea l  l iqu id  [5] 

0~ ~ ~ 0 2 a s ~' , % 
T ~ z ~ ~ dSr = ~a s j 0"20 % d3r = 

ar~Or "t Or$Or v 

N 

2 ~ ~  ~ ~ 
- -  l i e3  ~=t  J Or~Or'------~ ni~ ~ r V  d J .  

It fo l lows  f r o m  (1.7) and the  de f in i t ion  of ~0~ that  
on the  s u r f a c e  of the  j - t h  s p h e r e :  

J .  

Or~ar~---- 4- - -  - -  

0% ~ ~ 6~i 3 A ~  (ni~n~ v _  6~v). Or ~ - -  ~ -  (3n~ni  ~ - -  6~v) + -~ 

c o r r e s p o n d i n g  to the  v i r t u a l  v e l o c i t y  of the  l iqu id  

a s  

Dr e aS N Oc~i ~ Drig 

Dt ~ - -  -if" ~ Or ~ Dt 
i=1 

Thus ,  the  g e n e r a l i z e d  e x t e r n a l  f o r c e s  a r e  de f ined  

a a ~ do t~ Ooh ~ .~ 
Qt ~ = - - T  ~p--d/- O-~-a r .  (1.8) 

In a c c o r d a n c e  with  the  N a v i e r - S t o k e s  equa t ions  fo r  
an i n c o m p r e s s i b l e  v i s c o u s  f lu id  

p d v ~ / d t  = - - O p / O r ~  +O~'~t~/OrC~ + p g  ~ (1.9) 

w h e r e  g is the g r a v i t a t i o n a l  a c c e l e r a t i o n ,  Eq.  (1.8) can  
be  t r a n s f o r m e d  to 

a 3 ~ 0 

Or F" Or v I ' 

a3 I 0 ' ~  dar--Pa~ ~ O'-O~yrY 0 ~  dsr (1.10) 
A- T ~"t8 OrBOr "t 2 J Or ~ ~ Or ~ 

if we u s e  the  obv ious  ident i ty  A ~ i  -- 0 when  r~ ~ 0 
(i = 1, . . . ,  N). In addi t ion ,  it f o l l ows  f r o m  the  d e f i -  
n i t ion  of (p~ that  on the  s u r f a c e  of the  j - t h  s p h e r e :  

Thus ,  we  ob ta in  

N 

u i hj~ . (1.13) 
j = l  

The  v i s c o u s  f r i c t i o n  f o r c e  ac t ing  on a bubble  in the  
s y s t e m  c o n s i s t s  of two t e r m s ,  the f i r s t  of which  c o r -  
r e s p o n d s  to a f o r c e ,  g iven  by L e v i c h ' s  f o r m u l a  [4], 
ac t ing  on a s ing l e  bubble  on which  a f low with  v e l o c i t y  
- v  i i m p i n g e s .  The  v e l o c i t y  of the  l iquid  in a s y s t e m  
c e n t e r e d  at the  i - t h  bubble ,  in i t s  v i c in i ty ,  and as 
fo l lows  f r o m  (1.7), is such  that  in the  p r o b l e m  of a 
s t a t i o n a r y  s ing l e  bubble  washed  by a f low wi th  v e l o c -  
i ty - v i  at  inf in i ty  

Off) aa (3vi~ ~ri ~ ) 
~ ~ u d  - -  T \ ~ vr - -  _ _  , - -  V i  r . r{ 3 

The last term in formula (1.13) appears because  the viscous f r ic-  
t ion force depends not only on the ve loc i ty  of the flow impinging  on 
the bubble,  but  also on the ef fec t ive  width of the wake, which in 
turn depends on the coordinates and velocities of other bubbles in the 
system. The special case presented in 4 confirms (1.13). Calculations 
of the viscous friction force as the momentum unit time transmitted 
from the bubble to the liquid, and based on the transport in the wake 
of the vortex formed in the boundary layer, agree with those done by 
the energy dissipation method, as shown by Moore [5] for the steady 
motion of a single bubble. 
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The kinetic energy of an ideal  l iquid flowing around 
a sys tem of spheres  is given up to o rde r  (a / l )  ~ [1] by 

N N 
~PaS ( E  2 3a3 r = - 7  P'  (1.147 

i = l  i, j = l  

Since the kinet ic  energy (1.147 is a homogeneous 
quadra t ic  function of the ve loc i t i e s  ui 

N 

o r  = 2 T  (1.157 
S ui 0u i i~l 

then f rom the Lagrange  equations (1 .1 )wi thgene ra l i zed  
ex te rna l  f o r c e s  (1.13) it fol lows that 

iV iV 

d---r = - - - ~ p a ~  ~, (g.th)-- i2nlm E vi ' .  (1.167 
dt 

We can convince o u r s e l v e s  of the c o r r e c t n e s s  of 
this r e s u l t  by us ing the Nav ie r -S tokes  equations to 
ca lcu la te  the change in energy  of low v i scos i ty  l iquid 
where  the ve loc i ty  f ie ld  d i f fers  l i t t le  f r o m  that of an 
ideal liquid. 

Thus,  the Lagrange  equations for the motion of a 
sys tem of bubbles in a low v i scos i ty  l iquid a re  

N 
2~pa~ d / a 3a~ 

"J~l  

/v aA }.~ 

j = l  Orij 

N 

_ 4u ~ ' -3 ,  ] '  (1"177 3 pa~g~ - -  i 2 ~ a  (ui ~ -  a a ~ u-~ ~ ~.~ 

Neglect ing  the t e r m s  containing the sma l l  p a r a m -  
e te r  (a / l )  3, we obtain the equations of motion of an 
individual bubble 

du~ ~ 18~ 
d~F = - -  z g - -  ~ u t ,  (1.18) 

If this express ion  is subst i tuted in the t e r m s  of the 
left  s ide of Eqs.  (1,17), containing the sma l l  p a r a m -  
e te r ,  then up to t e r m s  of o rde r  (a/173 the Lagrange  
equations a r e  

dut~ 3as ~ OA.~ ~ 

j = l  g r j i  

N 
- 2 y ,  

2 J = l  

N 

The der ivat ion  of (1.19) entai ls  the use  of the s y m -  
m e t r y  of the t ensor  A.~. fl 1j 

The Lagrange equations (1.19) a re  sui table  for the 
deser ip t ion  of p r o c e s s e s  with suff ic ient ly  sma l l  a e c e l -  

e ra t ions  Idui /d t t  << u~/a. By using these  equations we 
can, for  instance,  solve  the p rob lem of motion of a 

s ingle  bubble of a s ize  co r re spond ing  to the Reynolds 
number  R >> 18, s ince  in this case  the re laxa t ion  
t ime  of the s teady s ta te  ve loc i ty  a2/18p s ignif icant ly  
exceeds  the re laxa t ion  t ime of the boundary layer  a/u .  

2. System of bubbles in an unbounded liquid with 
spat ia l ly  homogeneous and i so t ropic  dis tr ibut ion.  If 
the sys t em of bubbles has the fo rm of ane l l ipso id ,  then 
the sums contained on the r ight  s ide of equations (1.19) 
can be e x p r e s s e d  by the Lorentz  method [6], in t e r m s  
of the vo lume concent ra t ion  of bubbles in the sys tem 
c = (4/3)(a/1)  3 and the depola r iz ing  fac tor  n z of the 
e l l ipsoid  (n z = 0 for  a long c i r c u l a r  cyl inder ,  n z = 1/3 
for  a sphere ,  and n z = 1 for  a thin plate)  

N 

a3~, A~ ~ = (1 - -  3nz)c6 ~ .  (2.1) 
j ~ l  

Replac ing  uj on the r igh t -hand side of Eq. (1.197 
by u0 = - g a  2/9p, the steady s ta te  ve loc i ty  of ascent  of 
a s ingle  bubble of rad ius  a, we obtain the equation of 
motion of the i - th  bubble with the averaged  values  of 
the fo rce s  act ing on it 

a~ du i 
t8~ 8t = Uo-- u~ + (1 - -  3n~) CUo. (2.2) 

The ve loc i ty  of s teady ascent  of a bubble in the s y s -  
tem,  as (2.27 shows, is 

u = [t  + (t  - -  3n~) ct u0.  ( 2 . 3 )  

This r e s u l t  d i f fers  f rom the cor respond ing  one ob- 
tained in [1], s ince the re  it was e r roneous ly  assumed 
that the v i scous  f r ic t ion  f o r c e  depends on the concen-  
t ra t ion.  

The ascent  of a bounded layer  of bubbles in a cy l in-  
d r i ca l  column of l iquid in the absence of continuous 
de l ive ry  of gas through the base  of the column c o r -  
responds ,  as was shown in [1], to the choice  of n z = 1. 
The ve loc i ty  of ascent  of the bubbles in the column 
wil l  be u = u0(1 - 2c). The flow impinging on each 
bubble will  move  r e l a t i ve  to the tube walls  with v e l o c -  
ity 

N 

ui~__Va==_~2 E uo~A~a i--3nz 
- - 2  c u ~  ~ - -  CUO~ ' 

j = l  

Thus, in the reg ion  occupied by the bubbles the re  
is a descending flow of liquid with a mean  ve loc i ty  
- -CU O. 

We now cons ider  a continuous flow of bubbles 
through the liquid in a ve r t i c a l  tube with constant  
de l ive ry  of a i r  through the base.  It is obvious that 
the mean liquid ve loc i ty  over  any c ro s s  sect ion of the 
column in this case  will  be zero .  This means  that the 
en te r ing  gas impar t s  to the liquid an additional veloci ty,  
which compensa tes  the veloci ty  of descending motion 
of the liquid, equal to -cu0.  Hence, the ve loc i ty  of 
ascent  of the bubbles r e l a t i v e  to the tube walls  will  be 
g r e a t e r  by an amount cu0 than in the p rev ious ly  con-  
s ide red  case  and will  be u = (1 - c0)u 0. 
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3. Effect of wakes on the motion of a sys tem of 
bubbles. We cons ider  the motion of a s ingle bubble 
(R >> 1) in an unbounded liquid. F rom the known ex- 
p r e s s ion  for the drag force,  equal to - 12 r#au i ,  we 
wri te  the veloci ty field of the liquid far f rom the bubble 
in the region outside the wake in the form (Landau and 
Lifshi ts  [7]) 

v -~ 3~ar'~ / r'a~. (3.1) 

In the case  of motion of a sys tem of pa r t i c l e s  the 
effect of the pa r t i c le  wakes leads to the appearance  of 
an additional veloci ty of impinging flow in the v ic in i ty  
of the i - th  bubble, equal to 

N 

3va ~. r~j (3.2) 
j = l  ~J 

which produces  additional forces  of mutual  repu ls ion  
on the bubbles .  

This cor rec t ion  to the velocity field can be ne-  
glected in compar i son  with the prev ious ly  calculated 
velocity of impinging flow (1.7), if 

N 

For a sys tem of bubbles occupying a region of f inite 
length of o rder  L, as es t imates  show, Y, ~ L / l  3 , then 
for (3.3) implies  - 

L / a ~ R  ( l / a )  ~. (3.4) 

A s im i l a r  es t imate  can be obtained in the case  of a 
sys tem of bubbles with homogeneous densi ty  occupying 
an infinite hor izonta l  layer  of thickness  H. It follows 
f rom the solution of the e lec t ros ta t ic  p roblem of a field 
c rea ted  by a homogeneously charged layer  at E = 2~rzi/ 
/ l  3 (z i is the distance f rom the center  of the i - th  sphere 
to the middle of the layer) .  

The veloci ty of the impinging flow on the i - th  bub-  
ble will be g rea te r  in the upper  half of the layer  (and 
less ,  in the lower half) by 67ruazi/1 a than vi given by 
(1.7). Thus, the ascending layer  of bubbles tends to 
expand, but will  re ta in  its spat ia l ly  homogeneous 
d is t r ibut ion.  This r e su l t  is val id as long as the th ick-  
ness  of the layer  is suff icient ly smal l ,  i . e . ,  as long 
as the probabi l i ty  of a bubble in te r sec t ing  the wake of 
any other bubble can be neglected.  

We consider  the veloci ty field in the l amina r  wake 
of a s ingle  bubble on which a flow with veloci ty U 
impinges.  At large d is tances  f rom the bubble the 
velocity component  of the liquid Vx along the d i rec t ion 
of the impinging flow is 

v~ = __ 3 u a  exp(. ff .v2+z "- ) (3.5) 

(x, y, and z are the components  of the vector  r~); and 
Vy and v z have s im i l a r  forms.  The veloci ty field in 
the wake is  descr ibed  by (3.5) only at d i s tances  x >> 
>> aR 1/2, as Moore [5] showed, the width of the wake 
is v i r tua l ly  constant  and is  equal to a R  - l I t  , and the 
s t r eam l ines  for the l amina r  pa r t  of the wake differ 
l i t t le  f rom the s t r eam l ines  of an ideal liquid. 

The addit ional velocity field leads to en t ra inment  
of bubbles into the wake region.  The effect width of 
the region occupied by the wake, as (3.5) shows, is 
of the order  of (ux/U) 1/2. This is less  than the mean 
dis tance between the bubbles,  if the th ickness  H of the 
layer  occupied by the bubbles sa t is f ies  the inequali ty 

H / a d R ( l / a )  ~. (3.6) 

Thus, the effect of wakes on the motion of the s y s -  
tem of bubbles can be ignored if the th ickness  of the 
layer  sa t i s f ies  (3.6), while in the case  of motion of a 
sys t em of bubbles occupying a region of f inite d imen-  
s ions in an unbounded l iquid it is also essen t ia l  that 
the hor izonta l  d imens ions  of the region sat isfy in -  
equality (3.4). 

4. Viscous f r ic t ion  force in the motion of two bub- 
bles.  Let the rad i i  of the bubbles be a, and the dis tance 
l between their  cen te rs  sat isfy the condition a << l << 
<< aRl/2.  Then the velocity of the bubbles (U) is equal 
and directed along the di rect ion of motion of a single 
bubble, taken as the z -ax i s - - the  polar  axis of a spher i -  
cal sys tem of coordinates ,  whose or igin is at the center  
of the f i r s t  bubble. Let the coordinates  of the center  
of the second bubble be (l, 00, 0), where 

(a/ z) R - 1 ~ 4 ~  - 0 o ~ l .  

When these conditions are satisfied,  the flow around 
the f i r s t  bubble can be regarded as ax i symmet r i c  and 
the wake f rom the f i r s t  bubble does not enter  the bound- 
a ry  layer  of the second. The wakes from such bubbles 
do not overlap at a dis tance of the order  ofaR 1/2. If the 
veloci ty of the impinging flow at infinity is U, the 
veloci ty of the impinging flow in the vicini ty of the bub- 
bles ,  according to (1.7), is U[1 - (a / l )~] .  The s t r eam 
function in the vic ini ty  of the f i r s t  bubble at a dis tance 
r << l f rom it is 

= (U/2) (i - -  a 3 / P) (r s - -  a3/r) sin s 0 (4.1) 

and far f rom the f i r s t  bubble for l << r < R1/z it is 

-- (U / 2) r s sin s 0. (4.2) 

We draw two planes  S(z = zl, zl >> l) and S' (z = z2, 
l << -z2  ~< aR 1/2) so that the c u r r e n t  l ines  i n t e r sec t -  
ing them might be regarded  as para l le l .  The drag 
force  Da is the momentum flux impar ted  to the bubble 
by the liquid [7]. For  the quas i - s t eady  motion under  
considera t ion,  the drag force is equal to the difference 
in momentum fluxes across  the planes S and S' 

DI = ( ! - - ~ )  [p + p U  ( v z - - U ) ] d S .  (4.3) 

We use  the Bernoui l l i  equation 

P + (P/2) U 2 + P U ( v ~ - -  U) -?C(~) = 0  (4.4) 

where  the function C(r = 0, except for the region oc- 
cupied by the wake, for which calculat ions  s imi l a r  to 
those made in [5l, lead, with the aid of (4.1), to the 
following r e su l t  

C ( , )  = 6 V~ou ~ (l a~ - -  7~-) 5/( t) ,  (4.5) 
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[ (t) = (l / ] /~)  exp ( - -  t 2) - -  t erfc t, 

t = , [ 2 V ~ S a 2 U (  t aa\q-L - - ~ ) !  . ( 4 . 5 )  
(eonUd) 

Thus ,  to c a l c u l a t e  the  v i s c o u s  f r i c t i o n  f o r c e  ac t i ng  
on the  f i r s t  bubble  we  can conf ine  o u r s e l v e s  to i n t e -  
g r a t i o n  in the p lane  S '  o v e r  the  r e g i o n  occup ied  by the 

wake  f r o m  the  f i r s t  bubble .  S ince  the  i n t e g r a n d  d e -  
c r e a s e s  r a p i d l y  

c o  

D t = 2 n  I C(~p)gdg (g = r sin0) (4.6) 
0 

w h e r e ,  a c c o r d i n g  to (4.2), d0 = Uydy. Hence ,  i t  f o l -  
lows tha t  

D 1 = t2n~aU (t - -  a 3 / p)2. (4.7) 

The  r e s u l t  ob ta ined  c o n f i r m s  the va l id i ty  of f o r m u l a  
(i.13). 

The author thanks V. G. Levich and V. V. Tol- 
reacher for discussion of the results of this work. 
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