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We attempt the description of the motion of a system of bubbles in a
low viscosity liquid by means of Lagrange equations with the kinetic
energy of an ideal liquid as the Lagrangian function. The acceleration
of each bubble is assumed to be small such that the change in velocity)
can be neglected. A consideration of the virtual power of the general-
ized external forces leads to an expression, differing from that in [1],
for the viscous friction force acting on a bubble in the system. The
effect of the concentration and form of the system on the velocity of
ascent of the bubbles for low bubble concentration is investigated. The
maximum size of the region occupied by the bubbles when the effect
of wakes on the motion of the system can be neglected is estimated.

1. Lagrange Equations. The motion of a system of
gas bubbles in an ideal incompressible fluid can be
described [2] by Lagrange equations

d ar

T

di ou; —"—a-ri—ZQ1 (l'l)
with a Lagrangian function equal to T, the kinetic
energy of an ideal liquid. Here T is determined by the
radius-vectors r; of the centers of the bubbles and
their velocities uj at the same instant (i =1, ..., N),
and Qj is the generalized external force acting on the
i-th bubble of the system. Such a description is pos-~
sible since the interaction propagates with the speed
of sound, which can be regarded as infinite for an in-
compressible medium. In fact, in the case of the po-
tential flow of an ideal liquid the velocity of the liquid
at any point at a given instant is determined by the
velocities of the moving bubbles at the same instant.

In the case of a system of bubbles of moderate size
in a liquid of low viscosity (1 < R < 300, R =ua/v is
the Reynolds number, and u is the velocity of a bubble
of radius @ in a liquid with kinematic viscosity) the
sum of all the forces acting on the i-th bubble (i =1,
..., N} of negligibly small mass will be zerc and the
only force acting on such a bubble in the liquid will be
the hydrodynamic pressure
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where p is the pressure in the liquid, nia are the com-
ponents of the unit vector of the external normal to dS—
an element of surface of the i-th bubble, ¢'®B are the
components of the viscous stress-tensor with a single
nonzero component o'YY in a spherical coordinate sys-
tem with its center at the center of the i-th bubble, u
is the dynamic viscosity, v% are the components of
the liquid velocity, and r% are the coordinates of the
observation point (o = 1,2, 3). In (1.2) and henceforth
we assume summation over the repeated Greek indices.
The pressure p can be represented as the sum of
po—the pressure in an ideal liquid—and p'—an addi-

tional viscosity-dependent term, which in conjunction
with o/'T leads to the appearance of a viscous friction
force. For an ideal liquid [3]
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and hence, by including the viscous friction force in
the external forces acting on the i-th bubble we can
regard the Lagrange equations as a corollary of (1.2)
and (1.3).

However, a consideration of the viscosity-dependent forces means
that if in the description of the motion of a system of bubbles in a
viscous liquid we describe the system not by considering the interaction
of each bubble with the surrounding liquid, but as an assembly of
material points interacting in accordance with a definite law and
sitnated in an external field, then we cannot consider such action as
instantaneous. In fact, the viscous friction-force depends on the flow
velocity relative to the bubble at the considered instant and on the
acceleration of the relative motion at earlier times. A boundary layer
with transverse dimensions of the order of ¢ R™*? is formed around
each bubble. The propagation time of the perturbation through the
region occupied by the boundary layer is on the order of d®/vR ~ a/u.
Hence, the change in the velocity of the flow impinging on the bubble
leads to a change in the viscous friction-force with a delay onthe order
of a/u. The velocity of the impinging flow on the considered bubble
depends on the velocities of the other bubbles in the system. It follows
that the viscous friction force includes the particle interaction force
propagated with finite velocity.

Such interaction cannot be included in the Lagrangian function,
which depends only on the coordinates and velocities at the con-
sidered instant nor in the generalized external forces Qj, since by
definition the Qj entail the assumption that the liquid velocity at any
point is determined by the instantaneous positions and velocities of the
bubbles.

The finiteness of the propagation velocity of the interaction
makes it impossible to give a rigorous description of the motion of a
system of bubbles in a viscous liquid by means of Lagrange equations
with 2 Lagrangian function equal to the kinetic energy of an ideal
liquid. To determine the generalized external forces Q; for bubbles
in a low viscosity liquid we follow Levich [4] and assume that the
velocity field around the bubbles does not differ greatly from the
velocity field of an ideal liquid. The corrections to the kinetic energy
of the liquid flowing around a single bubble will be of the order of 1/R.

By repeating the arguments of [2] we show that for
a low viscosity liquid the generalized forces will be
the coefficients in front of the virtual bubble velocities
Dria/Dt in the expression for the virtual power of the
forces acting on the system, which, in view of (1.2),
is equal to the virtual power of the forces acting on the
liquid

dp® N X
Sp% VE&r =S Q4 D{,; (1.4)

el

where p is the density of the liquid, V¢ is the compo-
nent of the virtual liquid velocity due to the virtual
motion of the bubbles with velocities Drf/Dt.
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We consider the motion of a system of bubbles of
radius a. The bubble velocities relative to the liquid
at rest at infinity are uj. The velocity field potential
of this liquid satisfies the Laplace equation

AD =0 (1.5)
with boundary conditions
1 00/ or* = nfu* at ryf =a, and
®-—-0 at rf/—oc
(ri =], v/=r—x;, {=1,..., N). (1.6)

The solution of this problem, accurate to terms of
order (a/l)3, where ! is the mean distance between the
bubble centers is
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The virtual displacements of the bubbles give rise
to a virtual potential
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Thus, the generalized external forces are defined
as
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In accordance with the Navier-Stokes equations for

an incompressible viscous fluid
pdve /dt = —dp]dre + 86'*8 | 878 - pg* (1.9)

where g is the gravitational acceleration, Eq. (1.8) can
be transformed to
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if we use the obvious identity A%i =0 whenr{ # 0
(i=1, , N). In addition, it follows from the defi-
nition of (pia that on the surface of the j-th sphere:
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Hence, we can rewrite Q, using c'¥B = o'rrn}/nj/g
and (1.11), in the form
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The integral over the infinitely distant surface
bounding the system disappears, since it is assumed
that the region occupied by the bubbles has a finite
size and, hence when r — « we obtain p — const,
0¢j /Brﬁ ~r7% andg'98 ~ 74
The first integral in (1.12), in accordance with (1.2)
is zero, the second term is the Archimedes force, and
the third term is the viscous friction force, which can
be calculated with an error of the order of R™1/? by
replacing the velocity field in the whole space by the
velocity field of an ideal liquid [5]
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It follows from (1.7) and the definition of (p that
on the surface of the j-th sphere:
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Thus, we obtain
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The viscous friction force acting on a bubble in the
system consists of two terms, the first of which cor-
responds to a force, given by Levich's formula [4],
acting on a single bubble on which a flow with velocity
—vj impinges. The velocity of the liquid in a system
centered at the i-th bubble, in its vicinity, and as
follows from (1.7), is such that in the problem of a
stationary single bubble washed by a flow with veloc~
ity —v; at infinity
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The last term in formula (1.13) appears because the viscous fric-
tion force depends not only on the velocity of the flow impinging on
the bubble, but also on the effective width of the wake, which in
turn depends on the coordinates and velocities of other bubbles in the
system. The special case presented in 4 confirms (1.13). Calculations
of the viscous friction force as the momentum unit time wransmitted
from the bubble to the liquid, and based on the transport in the wake
of the vortex formed in the boundary layer, agree with those done by
the energy dissipation method, as shown by Moore [5] for the steady
motion of a single bubble.
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The kinetic energy of an ideal liquid flowing around
a system of spheres is given up to order (a/1)* [1] by
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Since the kinetic energy (1.14) is a homogeneous
quadratic function of the velocities uj

(1.15)

then from the Lagrange equations (1.1)with generalized
external forces (1.13) it follows that
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We can convince ourselves of the correctness of
this result by using the Navier-Stokes equations to
calculate the change in energy of low viscosity liquid
where the velocity field differs little from that of an
ideal liquid.

Thus, the Lagrange equations for the motion of a
system of bubbles in a low viscosity liquid are
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Neglectmg the terms containing the small param-
eter (a/1)®, we obtain the equations of motion of an
individual bubble
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If this expression is substituted in the terms of the
left side of Eqs. (1.17), containing the small param-
eter, then up to terms of order (az/l)3 the Lagrange
equations are
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The derivation of (1.19) entails the use of the sym-
metry of the tensor AiO]{

61\5’3 / Brl-f{ = c'iA,fY / (71','? .

The Lagrange equations (1.19) are suitable for the
description of processes with sufficiently small accel-

erations |duj/dt| < uf/a. By using these equations we
can, for instance, solve the problem of motion of a
single bubble of a size corresponding to the Reynolds
number R > 18, since in this case the relaxation
time of the steady state velocity al/18v significantly
exceeds the relaxation time of the boundary layer a/u.
2. System of bubbles in an unbounded liquid with
spatially homogeneous and isotropic distribution. If
the system of bubbles has the form of anellipsoid, then
the sums contained on the right side of equations (1.19)
can be expressed by the Lorentz method [6], in terms
of the volume concentration of bubbles in the system
¢ = (4/3)a/1)® and the depolarizing factor n, of the
ellipsoid (ny = 0 for a long circular cylinder, n, =1/3
for a sphere, and ny; =1 for a thin plate)
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Replacmg uj on the right-hand side of Eq. (1.19)
by uy = —ga /9u the steady state velocity of ascent of
a single bubble of radius @, we obtain the equation of
motion of the i-th bubble with the averaged values of

the forces acting on it

ot du;

v 2 = Yo— W+ (1—3n,)cu,. (2.2)

The velocity of steady ascent of a bubble in the sys-
tem, as {(2.2) shows, is

u=1[{ 4+ 4 —3n)e] u,. (2.3)

This result differs from the corresponding one ob-
tained in [1], since there it was erroneously assumed
that the viscous friction force depends on the concen-
tration.

The ascent of a bounded layer of bubbles in a cylin-
drical column of liquid in the absence of continuous
delivery of gas through the base of the column cor-
responds, as was shown in [1], to the choice of n, = 1.
The velocity of ascent of the bubbles in the column
will be u =uy(1 — 2¢). The flow impinging on each
bubble will move relative to the tube walls with veloc-
ity

N
a8 fa 1—3n,
u;® — v :TZ UPAs; = 5 o
j=1

Thus, in the region occupied by the bubbles there
is a descending flow of liquid with a mean velocity
—CUyg.

We now consider a continuous flow of bubbles
through the liquid in a vertical tube with constant
delivery of air through the base. It is obvious that
the mean liquid velocity over any cross section of the
column in this case will be zero. This means that the
entering gas imparts to the liquid an additional velocity,
which compensates the velocity of descending motion
of the liquid, equal to —cuy. Hence, the velocity of
ascent of the bubbles relative to the tube walls will be
greater by an amount cug than in the previously con-
sidered case and will be u = (1 ~ cgu,.



14 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

3. Effect of wakes on the motion of a system of
bubbles. We consider the motion of a single bubble
(R >» 1) in an unbounded liquid. From the known ex-
pression for the drag force, equal to —127uauj, we
write the velocity field of the liquid far from the bubble
in the region outside the wake in the form (Landau and
Lifshits [7])

v = 3var’; / r'3;. (3.1)

In the case of motion of a system of particles the -
effect of the particle wakes leads to the appearance of
an additional velocity of impinging flow in the vicinity
of the i-th bubble, equal to

N
vi=-—3va2 —:—’L,— (3.2)
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which produces additional forces of mutual repulsion
on the bubbles.

This correction to the velocity field can be ne-
glected in comparison with the previously calculated
velocity of impinging flow (1.7), if
' N .
P
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For a system of bubbles occupying a region of finite
length of order L, as estimates show, X ~ L/la, then
for (3.3) implies

L/a<IR (! a)d. (3.4)

A similar estimate can be obtained in the case of a
system of bubbles with homogeneous density occupying
an infinite horizontal layer of thickness H. It follows
from the solution of the electrostatic problem of a field
created by a homogeneously chargedlayer at £ = 27z;/
/l3 (zj is the distance from the center of the i-th sphere
to the middle of the layer).

The velocity of the impinging flow on the i-th bub-
ble will be greater in the upper half of the layer (and
less, in the lower half) by 67vaz;/I® than v given by
(1.7). Thus, the ascending layer of bubbles tends to
expand, but will retain its spatially homogeneous
distribution. This result is valid as long as the thick-
ness of the layer is sufficiently small, i.e., as long
as the probability of a bubble intersecting the wake of
any other bubble can be neglected.

We consider the velocity field in the laminar wake
of a single bubble on which a flow with velocity U
impinges. At large distances from the bubble the
velocity component of the liquid vx along the direction
of the impinging flow is

(3.5)

vx=——3U%exp(___U_ y2+zz)

4v z

(X, ¥, and z are the components of the vector ri'); and
vy and v have similar forms. The velocity field in
the wake is described by (3.5) only at distances x >
>> aRl/ 2. as Moore [5] showed, the width of the wake
is virtually constant and is equal to aR™! ¢, and the
stream lines for the laminar part of the wake differ
little from the stream lines of an ideal liquid.

The additional velocity field leads to entrainment
of bubbles into the wake region. The effect width of
the region occupied by the wake, as (3.5) shows, is
of the order of (vx/U)!/%. This is less than the mean
distance between the bubbles, if the thickness H of the
layer occupied by the bubbles satisfies the inequality

Hia<<R (] a). (3.6)

Thus, the effect of wakes on the motion of the sys-
tem of bubbles can be ignored if the thickness of the
layer satisfies (3.6), while in the case of motion of a
system of bubbles occupying a region of finite dimen~
sions in an unbounded liquid it is also essential that
the horizontal dimensions of the region satisfy in-
equality (3.4).

4, Viscous friction force in the motion of two bub-
bles. Let the radii of the bubbles be a, andthe distance
! between their centers satisfy the condition a < | «
<« aR!/%. Then the velocity of the bubbles (U) is equgl
and directed along the direction of motion of a single
bubble, taken as the z-axis—the polar axis of a spheri-
cal system of coordinates, whose origin is at the center
of the first bubble. Let the coordinates of the center
of the second bubble be (I, 6, 0), where

(a/ DR —p, 1.

When these conditions are satisfied, the flow around
the first bubble can be regarded as axisymmetric and
the wake from the first bubble does not enter the bound-
ary layer of the second. The wakes from such bubbles
do not overlap at a distance of the order of aR!/% If the
velocity of the impinging flow at infinity is U, the
velocity of the impinging flow in the vicinity of the bub-
bles, according to (1.7), is U[1 — (@/1)*]. The stream
function in the vicinity of the first bubble at a distance
r <[ from it is

v = (U/2) 1 —a®/ B (r* — a¥r) sin? g (4.1)

and far from the first bubble for ! <r < R!/? it is

Y=(U/2) r*sin’9. (4.2)

We draw two planes S(z = z;,z; > 1) and S' (z = z,,
l < ~z5 £ ar! 2) so that the current lines intersect-
ing them might be regarded as parallel. The drag
force D, is the momentum flux imparted to the bubble
by the liquid [7]. For the quasi-steady motion under
consideration, the drag force is equal to the difference
in momentum fluxes across the planes S and S'

Dy = (§—S§_’) [P+ pU (v, — V)] dS. (4.3)

We use the Bernouilli equation

P/ U +poU@w,—0) +C@) =0 (4.4)

where the function C(¥) = 0, except for the region oc-
cupied by the wake, for which calculations similar to
those made in [5], lead, with the aid of (4.1), to the
following result

C () =6y 3pU2(1 _g—> 87 (1), (4.5)
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t=1p[2 V28U (1— )T (4.5)

{3
. (cont'd)
Thus, to calculate the viscous friction force acting
on the first bubble we can confine ourselves to inte-
gration in the plane S'over the region occupied by the
wake from the first bubble. Since the integrand de~
creases rapidly

<o

Dy=2x§ C(p)ydy (y=rsind) (4.8)
]

where, according to (4.2), d¢¥ = Uydy. Hence, it fol-
lows that

D, = 12mualU (1 — a’/ B)2. (4.7)

The result obtained confirms the validity of formula
(1.13).

The author thanks V. G. Levich and V. V. Tol-
machev for discussion of the results of this work.
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